
CS433: Internet of Things
NCS463: Internet of Things

Dr. Ahmed Shalaby
http://bu.edu.eg/staff/ahmedshalaby14

http://bu.edu.eg/staff/ahmedshalaby14

Communications

❑ Introduction

❑ MQTT

⚫ Publish/Subscribe.

⚫ Topics & Subscriptions.

⚫ Quality of service levels.

⚫ Sessions / Retained message / Wills.

❑ MQTT vs. HTTP

Source: MQTT Broker Introduction

https://elearning.easygenerator.com/1f6c850c-50f4-4a6e-880a-66cb2ca54a86/#/

Internet of Things – Architecture

Communications: Intro

❑ IoT system interact and cooperate is seen as the “interaction

paradigm”. interaction paradigms (such as: Client-Server, Peer-to-

Peer, Message Passing, etc…)

❑ The C-S paradigm is based on a very simple interaction between the

clients and the server; a client sends a request (essentially a

structured message) to a server and expects (non-blocking) a

response from the server.

Communications: Intro

❑ The C-S paradigm is based on a very simple interaction between the

clients and the server; a client sends a request (essentially a

structured message) to a server and expects (non-blocking) a

response from the server.

❑ The Server could be Stateful or Stateless; the difference is whether

the system keep track of the previous interactions with clients and

has a finite state machine associated to the interactions going on. A

stateful server is more complicated to manage especially if many

clients are requesting in parallel the functions of the server.

Communications: Intro
❑ Message Passing model is based on a very simple organization in

which a sender forwards messages by means of a queue to a

recipient.

❑ Message Passing: can be interpreted as an “interrupt with data”, i.e.,

events are queued for processing together with associated data.

Receiving tasks can then operate on data received when the

message is taken from the queue. However,

⚫ an explicit treatment of communication is needed (“send message to task n”)

⚫ Assembling and disassembling of messages can be cumbersome.

Management of data (data are copied from data structures in the source of the

message, transmitted to a queue and then copied to a data structure at the

sink destination).

Communications: Intro
❑ In large Message Passing systems, senders and recipients share a

common infrastructure made out of queues, these can be organized

as a sort of Message Broker in charge for receiving and dispatching

(in an asynchronous manner) messages between sources and

sinks.

Communications: Intro
❑ There are at least three important features:

⚫ The model can be synchronous or asynchronous, i.e., in the first

case, the sender waits for the receiver to deal with the message,

in the second case once a message has been sent, the sender can

proceed with its computation. The choice of synchronicity and

asynchronicity depends on the applications requirements. The

introduction of queues in order to store messages for later processing

is a case in which asynchronous mechanisms are implemented.

⚫ Routing, the system (especially by means of the Broker Functions)

can route the messages even if the sender has not provided a

full path to the destination.

⚫ Conversion, the Broker functions can also make compatible different

messages format in such a way to support the interoperability

between different messaging systems.

Communications: Intro
❑ IoT network traffic falls into two categories: telemetry and

telecommand.

⚫ Telemetry is the act of gathering telemetrics, or sending data over long

distances. Usually telemetry involves sending data from many dumb

sensors to a smart hub of some sort.

⚫ Telecommand is the act of sending commands across a network.

❑ Most telemetry protocols are modeled as publish/subscribe

architecture. Sensors connect to a broker and periodically publish

their readings to a topic. A central cluster of servers (the cloud) will

then subscribe to the topic and process sensor readings in real-time.

Communications: Intro
❑ A typical enterprise arrangement will have thousands or millions of

sensors sending telemetrics to a handful of servers that split up the

task of processing the data.

Communications: MQTT

❑ MQTT (Message Queue Telemetry Transport) is more and more

becoming the standard messaging protocol for IoT messaging.

❑ MQTT was developed by IBM in 1999.

❑ Since 2014 MQTT is an OASIS standard messaging protocol.

❑ MQTT is very lightweight. As all workload is done by the broker.

⚫ The term 'workload' addresses the amount of load the CPU of either the

broker or client has to work off.

⚫ Also, the data exchange using MQTT doesn't require a lot of CPU.

⚫ Also, MQTT can be very easily implemented on the client-side. There is a

large variety of use cases and plenty of client code libraries.

❑ MQTT technology can be found in automotive, manufacturing,

telecommunications, and many more.

Communications: MQTT

❑ In MQTT the clients (the communication participants such as

sensors, machines, and applications) do not directly communicate

with each other but via a so-called broker.

❑ This is possible because of the efficient protocol format.

Communications: MQTT

❑ The MQTT broker receives the data from the data senders, filters

the data packets, and forwards them to the receiving clients.

❑ Clients sending data are called "Publishers“.

❑ Clients which receive data are called “Subscribers".

Communications: MQTT

❑ In fact, an MQTT system enables receiving clients to become

publishers as well.

❑ As MQTT messages can be very small depending on the payload

size, they can be sent easily even by small devices.

Communications: MQTT
Quality of Services

❑ MQTT can send messages with different "Quality of Service“ levels. This means

the publisher and subscriber can choose how reliably a message will be sent.

❑ QoS is between the client and broker, or broker and client only. It is not between

client and client.

❑ A receiver sets its QoS level when connecting. For a publisher, the broker is the

receiver.

❑ For a publisher, the broker is the receiver. When the broker, then, forwards the

message, the subscriber is the receiver.

Communications: MQTT
Quality of Services

❑ QoS Levels

❑ QoS level 0 means messages are sent without any confirmation from the

receiver. This means it is technically possible for a message to get lost, given an

unreliable connection. “fire and forget”-level.

❑ QoS level 1 means the receiver must send a confirmation to let the sender know

that the message was received. However, with QoS 1, it is possible that the receiver

gets a single message multiple times. This QoS level ensures that a message makes

it from sender to receiver but does not ensure that it is received exactly once.

❑ QoS level 2 uses a four-step communication process to ensure a message is sent

exactly once only, which can be important depending on the use case.

Communications: MQTT

❑ MQTT is designed especially for IoT - the Internet of things, or

machine-to-machine messaging with low transmission capacity.

❑ MQTT leaves a small footprint on the network. For example, the

HTTP header uses about 8,000 bytes, while the MQTT protocol uses

only two bytes and a few lines of code. Consider it in a factory

setting where many IoT devices are interacting and generating

workloads.

❑ Comparing HTTP and MQTT shows, e.g., that MQTT delivers

messages many times faster and more efficiently than the HTTP

protocol.

❑ Using QoS levels, to ensure data delivery, and the ability to queue

messages, MQTT is a perfect fit for connections that cannot be 100%

guaranteed to be stable.

Communications: MQTT

MQTT Setup

❑ MQTT principle:

⚫ A publisher (client) sends a message (including data) to a broker related
to a topic.

⚫ Other clients subscribe to this topic to receive the messages.

⚫ The broker filters the incoming messages and checks whether the

subscribers have the necessary rights. The broker then forwards the

messages to the subscribers.

⚫ Several publishers can send messages on the same topic.

⚫ Multiple subscribers can subscribe to the same topic.

❑ A typical MQTT setup includes one

broker and as many clients as you want.

Communications: MQTT

MQTT Setup

❑ MQTT principle:

⚫ The broker decouples the clients. The clients, the publishers, and
subscribers do not communicate with each other directly but always
through the broker as an intermediary.

⚫ As a result, with an increasing number of clients, the connection count
still only grows linearly.

If all clients had to connect for communication, the connection count would grow
exponentially making the system more complex, harder to manage, and more
prone to errors and failures.

❑ MQTT Concept:

⚫ PUBLISH / SUBSCRIBE

⚫ CLIENT / BROKER

❑ Message vs. packet: messages and packets - are the same and the terms
can be used interchangeably.

Communications: MQTT

⚫ All connections are only with the broker. The broker is, thus, the central hub in

MQTT communication. Consequently, most of the workload is carried by the

broker as well.

⚫ The load balancer is the main character that moves messages/packets within

the broker.

Communications: MQTT

❑ In an MQTT environment, the broker is the central entity and handles most of the

workload. Therefore, client devices have to do minimal processing and use only

minimal bandwidth.

❑ MQTT is very easy to implement on the client side. It's a perfect fit for constrained

devices with limited resources.

❑ When considering how much an MQTT Broker is used and the work it has to

perform, it is not so much about the number of clients that you should focus on

but rather the amount of data sent per second, the "traffic”.

❑ A different scenario that can incur a lot of traffic and workload for the broker. if you

want to transfer pictures every millisecond using QoS level 2 (QoS2) - a Quality of

Service level occupies the resources of a broker way more than other Quality of

Service levels.

❑ The Mosquitto broker is the most efficient broker offered worldwide.

⚫ Hosting: You can install and operate the open-source Mosquitto broker yourself.

Communications: MQTT
❑ High Availability (HA) is the ability of a system to cope with the loss of a central

component. This is typically achieved through redundancies. HA ensures that even if

the (main) broker is lost, because of a hardware failure, the MQTT communication

continues to work properly as another broker seamlessly takes over.

❑ This means that the systems should work without failure. The MQTT Mosquitto broker

is designed to be stable and consistently functional by clustering.

❑ Clustering provides prevention of disadvantages whenever a broker might break down,

e.g. hardware failure. Therefore usually three or more brokers work together in a

cluster.

❑ In the case of a breakdown of broker number one, the so-called "load balancer" shifts

the workload to a passive broker number two.

❑ To be safe, there is another passive broker clustered.

Communications: MQTT

❑ The Payload each message carries must not be encoded nor decoded by the

broker. The broker simply receives messages from the publisher, filters the messages,

and delivers them to the subscribing clients.

❑ Overall, it's possible to send up to 256MB in each Payload.

❑ Setup: An MQTT client is located after a router, using the NAT (Network Address

Translation) to transmit from a private network address to a public address.

Communications: MQTT
Security:

❑ it's always the end user that has to make up his mind about what level of security has

to be chosen and how to implement it.

❑ The use of ACLs (Access Control Lists) allows restriction of subscriptions and

publishing of clients.

❑ Usually, the broker supports common security measurements, e.g. TLS. Still, the end-

user has to make sure that the chosen measurements fit the security environment the

broker itself is part of.

❑ The default secured MQTT broker port is 8883.

❑ The standard unsecured port is 1883.

❑ TCP is embedding TLS (Transport Layer Security), the successor of SSL (Secure

Sockets Layer). Allowing MQTT packets to be transmitted via encrypted pipes.

❑ SASL Framework (Simple authentication and security layer) for example. SASL

provides authentication options, data integrity checking, and encryption.

Communications: MQTT
Security:

❑ Cryptology ensures privacy and integrity. Also authenticity with the use of

certificates.

❑ Advanced Encryption Standard [AES] is the most widely adopted encryption algorithm.

There is hardware support for AES in many processors, but not commonly for

embedded processors. The encryption algorithm ChaCha20 [CHACHA20] encrypts

and decrypts much faster in software, but is not as widely available as AES.

❑ The highest security levels can be achieved using client certificates (x509).

Communications: MQTT
Security:

❑ TLS protects all parts of an MQTT packet, not only the payload. Encrypting just

the payload is also able. But again, encrypting a payload is done at the

application level, not the broker.

⚫ Following encrypted Payloads can be sent without broker configuration

needed. The broker just delivers packets. Subscribing clients on the other end

must be able to decrypt the Payload.

⚫ The broker can identify the client on three different pieces of information

given. The clientId, a username, and password, or a certificate of the client.

⚫ each client must have a unique clientId. The clientId can be set by the client,

but it does not always have to. If a client connects to the broker and another

client session already exists with the same clientId, the old session will be

kicked out and taken over.

Communications: MQTT
Traditional Client / Broker Model:

❑ Publisher and subscriber don't exchange IP addresses and ports.

❑ There is no need for the publisher and subscriber to run at the same time.

Downtimes do not mean that messages are lost.

❑ Fluency, publishing or receiving messages/packets the operations of the publisher and

subscriber run.

❑ Any established connection is kept open by the broker until the client sends a

DISCONNECT command or the connection breaks up.

❑ The architecture can be scaled easily without affecting existing client devices. This

makes it easy to work and change architecture.

❑ Of course, MQTT can process messages event-driven. Most client libraries work

asynchronously. While waiting for a message or publishing it, other tasks are not

blocked.

Communications: MQTT
Client-Broker Connection:

❑ To publish messages, you must only know the hostname/IP and port of the broker.

❑ To receive messages, you must know the hostname/IP and port of the broker and the topic

you want to subscribe to.

❑ To establish a connection there is always a client-initiated CONNECT packet needed, that is

sent by the client to the broker.

❑ The broker in return responds by sending a so-called CONNACK packet (Acknowledge

connection request) and the CONNACK return code.

❑ After the CONNECT and CONNACK packet are exchanged, the connection is enabled.

Communications: MQTT
Client-Broker Connection:

❑ The clientId identifies each MQTT client that is connecting to an MQTT broker.

each client must have a unique clientId. In that case, the client sends a blank

clientId to the broker, and the broker generates a unique id for it whilst the

session is open.

❑ Persistent session:

⚫ The client must receive all messages.

⚫ The broker must queue the missed messages.

⚫ The client must resume all QoS1 and QoS2 messages after reconnecting to the broker.

❑ Clean Session:

⚫ The client only needs to publish messages to topics.

⚫ It doesn't need to subscribe to topics.

⚫ The client must not resume with messages it missed.

Communications: MQTT
Client-Broker Connection:

❑ LastWillMessage feature allows you to keep clients of your IoT system informed

of any unexpected disconnections. The broker distributes the lastWillMessage

when one of these events happens:

⚫ The broker detects an I/O error or network failure.

⚫ There is no communication between client and broker within the defined keepAlive

period.

⚫ The client breaks off without sending a DISCONNECT packet.

⚫ The broker shuts down the network connection when an error occurs.

❑ The lastWill message is sent by the broker on behalf of the client when a

disconnect occurs without a DISCONNECT packet before the actual break-off.

❑ lastWillTopic: The MQTT topic that clients subscribed to, who will receive the

lastWill message.

❑ lastWillRetain: Indicates whether the message will be a retained one or not.

Communications: MQTT
Client-Broker Connection:

❑ Retained messages should be considered to be a "last known good" value.

⚫ The typical example is a sensor that publishes when a door is opened/closed. If we didn't

have retained messages, a subscriber would have to wait until the door was opened or

closed, and hence a message published, before it knew the state of the door.

⚫ This could happen very infrequently. With a retained message, the subscriber gets to

know the state of the door as soon as it subscribes - but it also knows that this is not a

"fresh" message.

❑ As the client reconnects and publishes a message all subscribers will know that

the client is connected again.

❑ keepalive feature can be enabled, it contains two functions:

⚫ Network outage or peer death recognition. The broker or client must disconnect.

⚫ Hold on to the connection in case no interaction took action for a specific time. A

maximum length of the time interval is defined for each client request to connect with

the broker. Within the interval, it's ok that the client and broker do not transmit messages.

Communications: MQTT
PUBLISH:

❑ packetId: Identifies a message. The packetId is set by the client library and broker.

❑ topicName: The topic is set using a simple string. Topics are treated hierarchically. To

delimiter, a slash "/" symbolizes a separation. Allowing the client organizational

structure, much like a common filesystem.

❑ QoS: (Quality of Service) defines a certain level of service that enables the publisher to

make sure that the certainty and quantity of a subscriber receiving a sent message.

❑ retainFlag: With retained messages (retainFlag=true), you immediately find out,

because the retained message gives you the last status.

❑ dupFlag: indicates the duplicate of a message. A message with dupFlag was resent.

Communications: MQTT
SUBSCRIBE:

❑ packetId: Identifies a message.

❑ subscriptions: Each subscription consists of a topic and a QoS level.

⚫ Subscribing to several topics simultaneously is an option that's possible.

⚫ The broker must acknowledge each SUBSCRIBE packet. Therefore the broker sends a

SUBACK packet (subscribe acknowledge) to the client.

❑ Unsubscriptions The UNSUBSCRIBE packet contains the topics you want to unsubscribe

from.

Standard: MQTT

Section: 2.1.2 MQTT Control Packet type

Position: byte 1, bits 7-4.

Represented as a 4-bit unsigned value, the values are shown below

https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf

https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf

Standard: MQTT

Section: 2.1.2 MQTT Control Packet type

Position: byte 1, bits 7-4.

Represented as a 4-bit unsigned value, the values are shown below

Communications: HTTP

❑ HTTP is the most widely used and

available protocol. Almost all

computing devices with a TCP/IP

stack have it.

❑ HTTP: hypertext transfer protocol

❑ Web’s application-layer protocol

❑ client/server model:

❑ client: browser that requests, receives,

(using HTTP protocol), and “displays ”

Web objects

❑ server: Web server sends (using HTTP

protocol) objects in response to requests

Communications: HTTP

HTTP uses TCP:

❑ client initiates TCP connection (creates socket) to the server, port 80

❑ server accepts TCP connection from client

❑ HTTP messages (application-layer protocol messages) exchanged between

browser (HTTP client) and Web server (HTTP server)

❑ TCP connection closed

HTTP is “stateless”

❑ The server maintains no information about past client requests

HTTP connections: two types

❑ Non-persistent HTTP: at most one object sent over TCP connection.

❑ Persistent HTTP: multiple objects can be sent over a single TCP connection

between the client, and the server.

Communications: HTTP

Communications: HTTP

HTTP request message: general format:

❑ Method: GET, PUT, HEAD, POST

❑ Status Codes: 200 OK (request succeeded), 404 Not Found (not found on this server)

❑ Header size: 8 k bytes

Communications: MQTT vs. HTTP

❑ HTTP is the most widely used and available protocol. Almost all computing

devices with a TCP/IP stack have it. In addition, because HTTP and MQTT

are both based on TCP/IP, developers need to choose between them.

	Slide 1
	Slide 2: Communications
	Slide 3: Internet of Things – Architecture
	Slide 4: Communications: Intro
	Slide 5: Communications: Intro
	Slide 6: Communications: Intro
	Slide 7: Communications: Intro
	Slide 8: Communications: Intro
	Slide 9: Communications: Intro
	Slide 10: Communications: Intro
	Slide 11: Communications: MQTT
	Slide 12: Communications: MQTT
	Slide 13: Communications: MQTT
	Slide 14: Communications: MQTT
	Slide 15: Communications: MQTT
	Slide 16: Communications: MQTT
	Slide 17: Communications: MQTT
	Slide 18: Communications: MQTT
	Slide 19: Communications: MQTT
	Slide 20: Communications: MQTT
	Slide 21: Communications: MQTT
	Slide 22: Communications: MQTT
	Slide 23: Communications: MQTT
	Slide 24: Communications: MQTT
	Slide 25: Communications: MQTT
	Slide 26: Communications: MQTT
	Slide 27: Communications: MQTT
	Slide 28: Communications: MQTT
	Slide 29: Communications: MQTT
	Slide 30: Communications: MQTT
	Slide 31: Communications: MQTT
	Slide 32: Communications: MQTT
	Slide 33: Communications: MQTT
	Slide 34: Standard: MQTT
	Slide 35: Standard: MQTT
	Slide 36: Communications: HTTP
	Slide 37: Communications: HTTP
	Slide 38: Communications: HTTP
	Slide 39: Communications: HTTP
	Slide 40: Communications: MQTT vs. HTTP

